(12f^2-9f=15)-(-4f^2-3f-6)

Simple and best practice solution for (12f^2-9f=15)-(-4f^2-3f-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12f^2-9f=15)-(-4f^2-3f-6) equation:



(12f^2-9f=15)-(-4f^2-3f-6)
We move all terms to the left:
(12f^2-9f-(15)-(-4f^2-3f-6))=0
We calculate terms in parentheses: +(12f^2-9f-15-(-4f^2-3f-6)), so:
12f^2-9f-15-(-4f^2-3f-6)
determiningTheFunctionDomain 12f^2-(-4f^2-3f-6)-9f-15
We get rid of parentheses
12f^2+4f^2+3f-9f+6-15
We add all the numbers together, and all the variables
16f^2-6f-9
Back to the equation:
+(16f^2-6f-9)
We get rid of parentheses
16f^2-6f-9=0
a = 16; b = -6; c = -9;
Δ = b2-4ac
Δ = -62-4·16·(-9)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{17}}{2*16}=\frac{6-6\sqrt{17}}{32} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{17}}{2*16}=\frac{6+6\sqrt{17}}{32} $

See similar equations:

| 8.9x+11.57=-11.1x+10.95 | | 12500=200x(Y-1) | | y=8(5/6) | | -1/8u-1/3=-7/8-1/4 | | 7.2x-3.3=3.9 | | 4s-18+6s-12=20 | | y=3(1.5) | | 3v-1=4v+7 | | 12(b+2)=8(b+50 | | d/4=-32 | | y=7(0.4) | | y=46(0.9975) | | 35×2+5x=1 | | 6=6+h | | 4x+36=x+99 | | -3b+7=-15-2b | | y=1.5(0.549) | | 4(2x+3)-7=x | | 4x-4=256 | | 9=b+2 | | 1/3x+1=11 | | 1/2(z+1/8)=-1-6(z+1/8) | | 4x+5x+5x+2x-30=180 | | -2=5x+9 | | y=0.35(1.015) | | 6a+18=287 | | 4.9=1.7-0.5y | | g=85.5(3) | | -2=5x=9 | | 2(x+1)÷3=3x-4 | | 10-(9n-9)=0 | | 3/4x−15=14 |

Equations solver categories